Semicontinuity theorem in the micropolar elasticity
نویسندگان
چکیده
منابع مشابه
On conservation integrals in micropolar elasticity
Two conservation laws of nonlinear micropolar elasticity (Jk = 0 and Lk = 0) are derived within the framework of Noether’s theorem on invariant variational principles, thereby extending the earlier authors’ results from the couple stress elasticity. Two non-conserved M -type integrals of linear micropolar elasticity are then derived and their values discussed. The comparison with related work i...
متن کاملA Theorem on Lower Semicontinuity of Integral Functionals
A general lower semicontinuity theorem, in which not only mappings uM and PM but also the integrands fM depend on M , is proved for integrands f, fM under certain general hypotheses including that f(x, u, P ) is convex respect to P and fM converge to f locally uniformly, but fM (x, u, P ) are not required to be convex respect to P and fM (x, ·, ·) do not even need to be lower semicontinuous. So...
متن کاملAbout Clapeyron’s Theorem in Linear Elasticity
We examine some elementary interpretations of the classical theorem of CLAPEYRON in linear elasticity theory. As we show, a straightforward application of this theorem in the purely mechanical setting leads to an apparent paradox which can be resolved by referring either to dynamics or to thermodynamics. These richer theories play an essential part in understanding the physical significance of ...
متن کاملChiral effect in plane isotropic micropolar elasticity and its application to chiral lattices
In continuummechanics, the non-centrosymmetric micropolar theory is usually used to capture the chirality inherent in materials. However, when reduced to a two dimensional (2D) isotropic problem, the resulting model becomes non-chiral. Therefore, influence of the chiral effect cannot be properly characterized by existing theories for 2D chiral solids. To circumvent this difficulty, based on rei...
متن کاملComplementary energy release rates and dual conservation integrals in micropolar elasticity
The complementary energy momentum tensor, expressed in terms of the spatial gradients of stress and couple-stress, is used to construct the Ĵk and L̂k conservation integrals of infinitesimal micropolar elasticity. The derived integrals are related to the release rates of the complementary potential energy associated with a defect translation or rotation. A nonconserved M̂ integral is also derived...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2009
ISSN: 1292-8119,1262-3377
DOI: 10.1051/cocv/2009002